À medida que as organizações colocam cargas de trabalho de inteligência artificial e aprendizado de máquina (IA/ML) em desenvolvimento contínuo e implantação de produção, elas precisam ter os mesmos níveis de gerenciabilidade, velocidade e responsabilidade que o código de software regular.
A maneira popular de implantar essas cargas de trabalho é o Kubernetes, e os projetos Kubeflow e KServe os habilitam lá. Inovações recentes como o Model Registry, o recurso ModelCars e as integrações TrustyAI neste ecossistema estão entregando essas melhorias para usuários que dependem de IA/ML. Essas e outras melhorias tornaram a IA/ML de código aberto pronta para uso em produção. Mais melhorias virão no futuro.
Melhor Gestão de Modelos AI/ML
A IA/ML analisa dados e produz saída usando "modelos" de aprendizado de máquina, que consistem em código, dados e informações de ajuste. Em 2023, a comunidade Kubeflow identificou um requisito fundamental para ter melhores maneiras de distribuir modelos ajustados em grandes clusters do Kubernetes. Engenheiros trabalhando no OpenShift AI da Red Hat concordaram e começaram a trabalhar em um novo componente do Kubeflow, o Model Registry.
O que é o Model Registry?
O Model Registry é um componente do Kubeflow que fornece um repositório central para modelos de IA/ML. Ele permite que os cientistas de dados e engenheiros de IA/ML armazenem, versione, compartilhem e promovam modelos através do ciclo de vida de desenvolvimento. Isso inclui recursos como:
- Armazenamento de modelos: O Model Registry armazena os artefatos do modelo, incluindo o código do modelo, os dados de treinamento e as informações de configuração.
- Versionamento de modelos: Cada versão de um modelo é armazenada e pode ser facilmente acessada e comparada.
- Metadados de modelos: Informações como descrição, tags, proprietário e métricas de desempenho são armazenadas junto com o modelo.
- Promoção de modelos: Os modelos podem ser promovidos de um estágio (como desenvolvimento) para outro (como produção) de maneira controlada.
- Integração com outras ferramentas: O Model Registry se integra com outras ferramentas do ecossistema Kubeflow, como o Pipelines e o Katib.
Benefícios do Model Registry
O Model Registry traz vários benefícios para equipes que trabalham com IA/ML:
1. Gerenciamento centralizado de modelos
Ter um repositório central para armazenar e gerenciar todos os modelos de IA/ML de uma organização facilita a rastreabilidade, a reutilização e a colaboração entre equipes.
2. Versionamento e rastreabilidade
O versionamento de modelos permite que as equipes entendam a evolução de um modelo ao longo do tempo, facilitando a depuração e a auditoria.
3. Promoção controlada de modelos
O Model Registry permite que os modelos sejam promovidos de maneira controlada entre diferentes estágios (desenvolvimento, teste, produção), garantindo que apenas modelos aprovados sejam implantados em produção.
4. Integração com o ecossistema Kubeflow
O Model Registry se integra com outras ferramentas do Kubeflow, como o Pipelines e o Katib, permitindo um fluxo de trabalho mais automatizado e integrado para o desenvolvimento de IA/ML.
5. Governança e conformidade
O Model Registry ajuda as organizações a estabelecerem políticas e controles para garantir a governança e a conformidade de seus modelos de IA/ML, um requisito importante em muitos setores.
ModelCars: Gerenciamento de Modelos Avançado
Além do Model Registry, o ecossistema Kubeflow também inclui o ModelCars, uma ferramenta avançada de gerenciamento de modelos de IA/ML. O ModelCars fornece recursos adicionais, como:
- Comparação de modelos: Permite comparar métricas e desempenho entre diferentes versões de um modelo.
- Testes A/B: Suporta a execução de testes A/B para comparar o desempenho de diferentes modelos.
- Monitoramento de modelos: Monitora o desempenho dos modelos implantados em produção e dispara alertas quando o desempenho cai abaixo de um determinado limiar.
- Rollback de modelos: Permite reverter rapidamente para uma versão anterior de um modelo se houver problemas com a versão atual.
Integrações TrustyAI
O ecossistema Kubeflow também inclui integrações com a iniciativa TrustyAI, que visa melhorar a transparência e a confiabilidade dos sistemas de IA/ML. Algumas das integrações incluem:
- Explicabilidade de modelos: Ferramentas para explicar as decisões tomadas por modelos de IA/ML, ajudando a aumentar a confiança e a responsabilidade.
- Detecção de vieses: Recursos para detectar e mitigar vieses nos dados e modelos de IA/ML.
- Monitoramento de conformidade: Ferramentas para monitorar a conformidade dos modelos de IA/ML com regulamentos e políticas.
Conclusão
À medida que a adoção de IA/ML continua a crescer, a necessidade de gerenciar esses sistemas de maneira eficiente e responsável também aumenta. O ecossistema Kubeflow, com componentes como o Model Registry, o ModelCars e as integrações TrustyAI, está fornecendo soluções importantes para ajudar as organizações a gerenciar seus modelos de IA/ML com mais facilidade, segurança e conformidade. Essas inovações estão tornando a IA/ML pronta para uso em produção, e mais melhorias virão no futuro.