Projeto de coluna de aço de acordo com o Eurocódigo 3

Projeto de coluna de aço de acordo com o Eurocódigo 3

Este artigo trata do dimensionamento de colunas de aço de acordo com o Eurocode 3, EN 1993-1-1. Cada projeto e processo de design é explicado em detalhes.

As colunas de aço são projetadas para suportar a compressão axial e as tensões de flexão causadas pelos fixadores. Ao contrário do concreto, o aço é fraco à compressão. Existem basicamente dois tipos de falhas em pilares de aço.

  • Esmagamento do material – falha do material
  • Flambagem de componentes (flambagem geral ou flambagem local)
Trituração de materiais

O material atinge seu limite de capacidade e falha porque não consegue mais suportar a carga aplicada.

Este tipo de falha pode ser devido à resistência à compressão e/ou área transversal insuficiente.

Flambagem das barras

A flexão geral ou localizada pode levar a defeitos de projeto em pilares de aço. A flexão local depende das propriedades da seção transversal.

A flambagem geral depende de vários fatores.

  • Comprimento da coluna
  • Restrições em cada extremidade (desamarrado, parcialmente amarrado e totalmente amarrado)
  • Propriedades da seção transversal (área da seção transversal, forma, etc.)

Para obter mais informações, consulte o artigo sobre Métodos de falha de coluna para diferentes tipos de defeitos em pilares de concreto.

Vamos discutir o aspecto do projeto da coluna de carga axial.

Método de projeto de coluna de aço

  • Classificação da seção

Primeiro, a seção transversal deve ser classificada de acordo com as dimensões da seção transversal e as propriedades do material.

Com base nos limites de esbeltez, os perfis são divididos nas categorias Classe 1, Classe 2, Classe 3 e Classe 4. Dessa forma, os perfis das Classes 1, 2 e 3 são classificados como perfis não finos e os perfis da Classe 4 como perfis finos. .

Mais informações podem ser encontradas na seção 5.5.2 da EN 1993-1-1 (EC3).

Vamos dar uma olhada na seção H e ver quais limites estão disponíveis para classificar a seção. Os limites são os seguintes, conforme mostrado na Tabela 5.2.

Relação Aula 01 Aula 02 Aula 03
Flange de pressão em perfil laminado CF/TF 10ε 14ε
Ponte feita de perfil laminado Ceu/Teu 33ε 38ε 42ε

Onde ε = √(235/fj)

  • Resistência plástica ou resistência transversal, Nc, Estrada
    • Perfis não finos: Classe 1, 2 e 3

Nc,Rd = Afjm0

    • Seção fina: Classe 4

Nc,Rd = LIGADOefFjm0

Um e Umef deve cumprir as Seções 6.2.2.1 e 6.2.2.5.

Após calcular a resistência, deve ser realizado o seguinte teste de capacidade.

NEd. /Nc,Rd ≤ 1,0

  • Resistência à flambagem, Nb, Estrada

Primeiro calcule a resistência à encurvadura dependendo da classe da secção.

    • Secção não esbelta (Classe 1, 2 ou 3)

Nb, Estrada = χ A fjm1

    • Seção transversal estreita (Classe 4)

Nb, Estrada =χUMAef Fjm1

Se A e Aef Os furos determinados para fixações nas extremidades dos suportes não precisam ser levados em consideração.

Onde “χ” é a redução da flambagem da seção. Pode ser calculado usando a seguinte equação.

α é um fator de imperfeição que pode ser encontrado na Tabela 6.1 do código abaixo.

Curva de curvatura A0 A b C D
Fator de imperfeição α 0,13 0,21 0,34 0,49 0,76

Aqui um0a, b, c e d são linhas de encurvadura a selecionar na Tabela 6.2: Seleção da linha de encurvadura para secções transversais de acordo com a EN 1993-1-1. A parte da Tabela 6.2 que fornece as curvas para seções laminadas é mostrada na figura a seguir.

Um método simplificado para calcular λ‾ é apresentado na Secção 6.3.1.3 da EN 1993-1-1.

  • Verifique NEd. /Nb, Estrada <1

O fluxograma do processo de design pode ser mostrado a seguir.

Para maiores explicações sobre o processo de cálculo, você pode consultar o outro artigo publicado no EC3 com um exemplo resolvido.

Conteúdo Relacionado

Importância da Análise do Solo na Engenharia Civil
A composição do solo está no centro de todo projeto...
Tijolos de Madeira Reconstituída: A Solução Sustentável para Construções Modernas
A construção civil é um setor fundamental para o desenvolvimento...
Concreto Convencional vs. Concreto de Alta Resistência (CAR): Entendendo as Diferenças e Escolhendo a Melhor Opção
Na indústria da construção, a escolha do tipo de concreto...
Técnicas inovadoras de Estabilização de Solos na Engenharia Geotécnica
No campo da Engenharia Geotécnica, as técnicas mecânicas desempenham um...
Espuma de Alumínio vs. Isolamento de Lã de Vidro: Qual é a melhor opção para sua Construção?
Ao escolher o material de isolamento ideal para sua construção,...
Construção com Materiais Sustentáveis: Madeiras Laminadas e Painéis de Fibra de Coco
A construção com materiais sustentáveis tem sido uma prioridade crescente...
返回網誌

發表留言

請注意,留言須先通過審核才能發佈。