As unidades centrais de HVAC dominaram os espaços domésticos e de trabalho durante décadas. E embora se mostrem muito eficazes na manutenção da temperatura, a natureza subjetiva do conforto tende a ser um problema em grandes espaços de trabalho com várias pessoas. Para isso, você pode optar por um Sistema de Conforto Pessoal ou PCS, como poltronas aquecidas e ventiladores que podem ajudar a atender às necessidades de cada indivíduo.
No entanto, a eficácia dos PCS é limitada devido a uma lacuna de comunicação entre o HVAC central e as unidades PCS individuais. A temperatura constante que estes sistemas proporcionam também não considera as alterações do ambiente externo e requerem ajuste manual. Esta falta de integração pode ser colmatada com a IA e a Internet das Coisas. Neste artigo, discutiremos modelos propostos para integração de PCSs com um HVAC central.
1. Algoritmos de pesquisa
Um algoritmo de busca encontra o caminho mais curto para um problema ao procurar soluções possíveis. Para HVAC, encontraria o melhor tempo operacional para o máximo conforto, resfriando ou aquecendo intuitivamente o espaço antes do início do horário de trabalho. Este considera as preferências das pessoas, determinando um conjunto de parâmetros que proporcionem o maior conforto para todos; por exemplo, aprendendo como o HVAC é ajustado manualmente ao longo do dia e incorporando essas alterações em um sistema automatizado.
2. Inferências Lógicas
Embora o algoritmo de pesquisa possa encontrar várias maneiras de ajustar automaticamente o HVAC central, apenas algumas dessas respostas fariam sentido intuitivamente para o conforto humano. Os computadores operam com base na lógica binária VERDADEIRA e FALSA, mas o raciocínio humano é muito mais avançado.
A IA tem que tomar decisões com base em inferências lógicas mais complexas. Por exemplo, se a temperatura exterior cair durante a noite, que nova temperatura o HVAC deverá visar e em que circunstâncias esta resposta deverá ser diferente? Isso resultará em automação que elimina a necessidade de intervenção humana.
3. Aprendizado de máquina
O aprendizado de máquina é um subramo da Inteligência Artificial que interpreta dados e cria modelos que melhor simulam o cérebro humano.
A interpretação precisa dos dados é essencial para garantir que a IA que controla o aquecimento ou resfriamento do HVAC não superestime ou subestime a temperatura desejada de um espaço de trabalho. Um sistema HVAC deve ser capaz de tomar decisões fundamentadas com base nas inferências lógicas mencionadas acima. Usando o aprendizado de máquina, é possível treinar um modelo que alteraria os parâmetros do HVAC como se fosse um ser humano real.
4. Sistemas Conectados
Devido à variação na preferência humana, os PCS são usados para criar um ambiente local feito especificamente para um indivíduo. Por exemplo, se você achar que o ar condicionado do seu espaço está muito frio, você pode usar um aquecedor inteligente para pés ou assentos para obter uma temperatura mais desejável. Quando você adiciona IA à mistura, as configurações manuais contribuem para o treinamento da IA e ligam e desligam automaticamente à medida que aprendem suas preferências com o tempo.
Esses PCSs precisam estar conectados ao sistema HVAC central para dar conta do ambiente dinâmico externo. Para que uma abordagem algorítmica seja totalmente bem-sucedida, todos esses dispositivos devem estar interligados e controlados por uma IA única para um controle mais preciso. Ter PCSs conectados a um HVAC via Internet ou LAN local pode ser uma forma de conseguir isso.
Desafios e desvantagens
Existem diversas dificuldades a serem observadas na implementação de tal sistema. Um sistema tão avançado requer tempo e memória significativos. Em segundo lugar, os PCS por si só pretendem ser dispositivos baratos que utilizam uma fração da energia de um HVAC e proporcionam conforto individual. Adicionar funcionalidade de IA anularia esse propósito devido ao aumento dos custos de fabricação e operação.
Em segundo lugar, os algoritmos requerem dados de sensores mais precisos para funcionarem conforme pretendido devido ao controle preciso que desejamos. Esses sensores aumentam o custo de um sistema PCS ou HVAC. Comprar peças de reposição baratas para bombas e sensores para um sistema HVAC tradicional é muito mais econômico. Uma solução alimentada por IA, por outro lado, exigiria mais dinheiro para reparos.
Nota final
Embora a pesquisa atual sobre controle automático seja promissora, ainda não se sabe se ela pode ser implementada em larga escala. Ainda assim, a diminuição dos custos das peças de computador e as técnicas de fabrico mais económicas poderão tornar tais sistemas uma norma num futuro próximo.